HILLTOWN TOWNSHIP WATER AND SEWER AUTHORITY 2014 WATER QUALITY REPORT

HTWSA WATER SYSTEM **•** PWSID #1090117 **&** PWSID #1090162

Este informe contiene información muy importe sobre su agua de beber. Tradúzcalo ó hable con alguien que lo entienda bien. (This report contains very important information about your drinking water. Translate it, or speak with someone who understands it.)

HTWSA's Commitment to you: Safe & Reliable Drinking Water

Water, Sewer Rates Remain Stable for 2015

Thanks to continued operating efficiencies and visionary decisions by the Authority Board, customers of the Hilltown Water and Sewer Authority will see no changes in rates during 2015.

"We're proud to be able to keep our rates the same," said Board Chairman Bruce Knipe. "That's no easy task at a time when our fixed expenses continue to rise."

The decision to hold the line comes a year after the board decreased water rates by four percent while still maintaining a high level of customer service. HTWSA customers pay some of the lowest rates in the region.

Knipe said an emphasis on prudent budgeting and a continuing commitment to invest in the latest technology are key to the Authority's sound financial footing. He also credited the Authority's office and field staff led by Manager Jim Groff for its attention to detail in keeping the system operating efficiently.

"We are always looking for better, more costeffective ways to deliver quality services to our ratepayers," said Knipe. "As long as we can do that and keep our rates stable, the Authority Board is pleased."

The last time HTWSA changed water rates was in 2011 when they went up by three percent. That means 2015 water rates will be less than they were in 2010.

How Good is Hilltown's Water?

The Hilltown Township Water and Sewer Authority (HTWSA) has been committed to providing residents with a safe and reli-

able supply of high-quality drinking water since 1986. We test our water using the most current equipment and methods to ensure safe drinking water. This annual report will provide you with information regarding the source of your water; test results; and other things you should know about the water you use.

We are proud to report that the water we provide to you exceeds the water quality standards of the Pennsylvania Department of Environmental Protection and the U.S. Environmental Protection Agency. We have learned through our monitoring and testing that some constituents have been detected. The EPA has determined that your water IS SAFE at these levels.

You may also visit EPA's drinking water website, <u>www.epa.gov/safewater</u>, for more information about drinking water standards and quality. Page 2

Drinking Water Meets and Exceeds EPA and PADEP

We routinely monitor for contaminants in your drinking water according to federal and state laws. The following table shows the results of our monitoring for the period of January 1 to December 31, 2014. The state allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data is from prior years in accordance with the Safe Drinking water Act. The date has been noted on the sampling table results.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate ways to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe

INORGANIC CONTAMINANTS										
Contaminant	Action Level (AL)	MCLG	90 th Percen- tile Value	Units	# of Sites Above AL of Total Sites	Violation of TT Y/N	Sources of Contamination			
Copper (2013	5)	Corrosion of household plumbing								
Main System			0.25	ppm	0 of 19	Ν	systems; erosion of natural deposits;			
Ridge & Reserve	1.3	1.3	0.022	ppm	0 of 5	Ν	leaching from wood preservatives			
Contaminant	MCL	MCLG	Highest Level Detected	Range	Units	Violation Y/N	Sources of Contamination			
Arsenic ¹	10	0	ND	ND	ppb	Ν	Erosion of natural deposits; runoff from orchards, runoff from glass & electronic production wastes			
Barium (2012)	2	2	0.063	0.024- 0.063	ppm	Ν	Discharge of drilling wastes; dis- charge from metal refineries; erosion of natural deposits			
Fluoride (2012)	2	2	0.29	0 - 0.29	ppm	Ν	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories			
Nickel	0.1	0.1	0.0054	0-0.0054	ppm	Ν	Erosion of natural deposits; Dis-			
Chlorine (In Sy	stem)									
Main System	MRDL	MRD-	1.92 MRD-	0.47 –1.92	ppm	Ν	Water additive used to control mi- crobes.			
Ridge & Reserve	=4	LG=4			0.72	0.52 - 0.72	ppm	Ν		

DETECTED SAMPLE RESULTS

¹ Not Detected (ND) - Four samples were tested for arsenic in 2014, all results were below the detection limit of 3 ppb.

2014 WATER QUALITY REPORT

Page 3

DETECTED SAMPLE RESULTS									
DISINFECTION BYPRODUCTS									
Contaminant	MCL	MCLG	Highest Level Detected	Range	Units	Violation Y/N	Sources of Contamination		
Total Tryhalometha	anes (TTHN	ls)							
Main System	00		34.4 2.1- ppb	N					
Ridge & Reserve	80	n/a	48.8	15.3- 48.5	ppb	N	Byproduct of drinking water disinfection		
RADIONUCLIDE	s								
Contaminant	MCL	MCLG	Highest Level Detected	Range	Units	Violation Y/N	Sources of Contamination		
Gross Alpha	15	0	2.02	0-2.02	pCi/L	N	Erosion of natural deposits of certain minerals that are radioactive and may emit a form of radiation known as alpha radiation.		
Uranium (2012)	30	0	0.58	0.39- 0.58	pCi/L	N	Erosion of natural deposits		
Radium 226 and Radium 228 Combined (2012)	5	0	1.06	0.12- 1.06	pCi/L	N	Erosion of natural deposits		

Regulated contaminants results listed were detected in the HTWSA Main System, unless otherwise noted. Residents of Ridge and Reserve, please see NPWA data starting on page 5. Regulated contaminants not listed in the table were not detected in our samples.

ENTRY POINT DISINFECTION RESIDUAL—HTWSA WELLS 1 AND 2									
Contaminant	Minimum Residual	Lowest Level	Range	Units	Sample Date	Violation Y/N	Sources of Contamination		
Chlorine	0.40	0.42	0.42-4.40	ppm	Daily 2014	Ν	Water additive used to control microbes.		

Key To Tables (HTWSA & NPWA)

(MCL)- The highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLGs as feasible using the best available treatment technology.

Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Action Level (AL) = The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level Maximum Residual Disinfectant gle penny in \$10,000,000. Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Contaminant Level Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

> ppb = parts per billion, or micrograms per liter (µg/L), One part per billion corresponds to a sin-

ppm = parts per million, or milligrams per liter (mg/L), One part per million corresponds to a single penny in \$10,000.

pCi/L = picocurries per liter (a measure of radioactivity)

NTU - Nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person

Treatment Technique (TT) - A required process intended to reduce the level of a contaminant in drinking water.

Page 4

WHAT ELSE SHOULD I KNOW?

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

Microbial contaminants, these include viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, these include salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides, these may come from a variety of sources such as agriculture, urban storm water run off, and residential uses.

Organic chemical contaminants, these include synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

Information about Lead: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. HTWSA is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/ safewater/lead.

Information about Copper: Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.

Radioactive contaminants, these can be naturally occurring or be the result of oil and gas production and mining activities.

In order to assure that tap water is safe to drink, EPA and DEP prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA and DEP regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants and potential health affects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline. ●

SAMPLING AND TESTING

Hilltown Township Water and Sewer Authority routinely monitors for constituents in your drinking water according to the Federal and State laws. In order to ensure that tap water is safe to drink EPA prescribes regulations which limit the amount of certain contaminants in water provided by public systems. HTWSA has met or exceeded all standards set forth for quality and safety.

During 2014, samples were tested at Analytical Laboratories, Inc. Chalfont, PA (215) 723-6466. More information about contaminant and potential health effects can be obtained by calling the Environmental Protection Agency.

Safe Drinking Water Hotline 1-800-426-4791

Information about Arsenic: While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Other Contaminants Tested But Not Detected: Haloacetic Acids (HAAs); Inorganic Compounds such as Nitrate and Nitrite; Regulated Volatile Contaminants, such as Benziene, Styrene, Toluene and Xylens; Synthetic Organic Contaminants, such as Alachor, Hexachlorobenzene, Balapon, Pentachlorophenol and Carbofuran.

2014 WATER QUALITY REPORT

Where Does Your Water Come From?

In 2014, two municipal wells and an interconnection with North Penn Water System fulfill the needs of HTWSA's customers. Well No. 2, located on South Perkasie Road, supplied groundwater, from the Pleasant Creek Watershed. Well No.1, located off Thistle Lane, supplying groundwater from the East Branch Perkiomen Creek Watershed. Water drawn for these wells undergoes treatment for iron, manganese and arsenic, and chlorine is added as a disinfectant to kill any bacteria. Well No. 5, located on Route 152, was taken offline in 2010 when arsenic was detected. A copy of the Source Water Assessment is available for viewing at the HTWSA Office.

HTSWA has two interconnects with North Penn Water Authority (NPWA). The southern connection is the sole source for the Ridge and Reserve at Hilltown. The northern interconnect is a supplementary water source for the central distribution system.

THINGS YOU SHOULD KNOW ABOUT NPWA'S WATER QUALITY TESTING

Source Water Information

In 2014, approximately 85% of the water that NPWA delivered to its customers was treated surface water from the Forest Park Source Water Assessment Information Water (FPW) Treatment Plant located in Chalfont. The remaining 15% of water came from 12 groundwater supply wells that NPWA operates. These wells are located throughout the service territory, in Bucks and Montgomery Counties. The water from these wells is chlorinated before it is delivered to NPWA customers' homes.

The source of water that is treated at FPW, which is jointly owned by North Penn and North Wales Water Authorities, is the North Branch Neshaminy Creek. The North Branch Neshaminy Creek originates as a small stream near Route 413 in Central Bucks County. The creek the flows into Lake Galena, which is the reservoir for Forest Park Water. Water released from the Lake Galena flows down the Neshaminy Creek to where it is drawn into the FPW, in Chalfont, PA. In the summer months and times of low flow, water is pumped from the Delaware River at Point Pleasant and diverted into the North Branch Neshaminy Creek near Gardenville, PA. This diversion controls the level of Lake Galena for recreational purposes, ensures a sufficient drinking water supply, and maintains base flow in the stream.

Cryptosporidium and Giardia

Giardia and Cryptosporidium are microbial pathogens found in surface water throughout the U.S. Monitoring of the source water (before treatment) at FPW indicated the presence of Giardia in 2 out of 12 samples collected. Cryptosporidium was not detected in any of the 12 samples collected. FPW treatment processes are designed to remove or inactivate Giardia and Cryptosporidium cysts with a high level of certainty. Current available test methods do no allow us to determine if the organisms are dead or if they are capable of causing disease. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immune-compromised people are at greater risk of developing life-threatening illness. NPWA encourages immunocompromised individuals to consult their doctor regarding appropriate precautions to take to avoid infection. Giardia and Crypto-

sporidium must be ingested to cause disease, and it may be spread through means other than drinking water.

A Source Water Assessment of NPWA groundwater sources was completed in 2005 by the PA DEP. Most of the land that surrounds NPWA wells is highly developed commercial and residential areas, with a small amount of forested or agricultural/ undeveloped land. The Assessment found that NPWA groundwater sources are potentially most susceptible to transportation corridors, residential and agricultural activities, railroad transportation, auto repair shops, machine/metal working businesses, National Priorities List (NPL) sites, industrial wastewater disposal, golf courses, a recycling center and a print shop.

In 2003, a Source Water Assessment of the North Branch Neshaminy Creek Intake, which supplies water to the Forest Park Water Filtration Plant, was completed and prepared by Spotts, Steven & McCoy, Inc. for the PA DEP. The Assessment found that the North Branch Neshaminy Creek Intake is potentially most susceptible to point sources of pollution from auto repair shops, wastewater treatment plants, boating, quarries, on-lot septic systems and gas stations. Non-point sources of potential contamination include major transportation corridors and runoff from areas of urban development, livestock farming, and industrial parks. The most serious potential sources are related to accidental releases of a variety of materials along transportation corridors and high nutrients from Lake Galena.

Unregulated Contaminate Monitoring

Unregulated contaminants are those for which EPA has not yet established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. In 2014, unregulated contaminant assessment monitoring began at FPW. Monitoring at NPWA wells and distribution system began in January 2015 and is continuing through October 2015. To request a copy of unregulated contaminants monitoring results, contact Lindsay Hughes, Community Relations Coordinator, at (215) 855-3617.

HILLTOWN TOWNSHIP WATER AND SEWER AUTHORITY

Page 6

The following pages contain important information about water quality monitoring of the NPWA distribution system.

	SUIV	IMARY OF	NPWA w	ATER QU	ALITY D	АТА
Contaminant (Unit of Measurement)	Violation Y/N	Avg. Level Detected	Range Detected	MCLG	MCL	Sources of Contamination
REGULATED AT THE WEL						
Inorganic Contaminan	ts (2012 -	2014)	-	-		
Arsenic (ppb)	Ν	1.0	0-5.0	0	10	Erosion of natural deposits; runoff from orchards; glass and electronics produc- tion waste
Barium (ppm)	Ν	0.21	0-0.38	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Flouride (ppm)	Ν	0	0-0.12	2	2	Erosion of natural deposits; discharge from fertilizer and aluminum factories
Nitrate (ppm) ¹	Ν	1.26	0-4.5	10	10	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits
VOLATILE ORGANIC CON	TAMINAN	rs			•	
Tetrachloroethylene (ppb)	Ν	0	0-0.7	0	5	Discharge from factories and dry clean- ers.
RADIONUCLIDES (2011-2	2014)					
Alpha Emitters (pCi/L) ²	Ν	3.34	0-6.92	0	15	Erosion of natural deposits
Combined Radium (pCi/L)	Ν	0	0-1.12	0	5	Erosion of natural deposits
Uranium (µg/L)	Ν	4.26	0-10.4	0	30	Erosion of natural deposits
DISINFECTANT RESIDUAL	S AND DIS	INFECTION B	Y-PRODUC	rs (DBPs)		
Chlorine (leaving FPW) (ppm)	Ν	1.16	0.99-1.23	MRDLG = 4	MRDL = 4	Water additives used to control microbes
Chlorine (leaving the wells) (ppm)	Ν	0.94	0-2.0	MRDLG = 4	MRDL = 4	Water additives used to control microbes
Bromate (Tested at FPW) (ppb)	Ν	1.4	1.1-2.1	0	10	By-product of drinking water disinfection
PERFORMANCE MONITO	RING	r			r	
Turbidity (NTU) ³	Ν	0.02	0.02-0.04	N/A	TT	Soil runoff
CONTAMINANTS TESTED	THROUGH	OUT THE DIS	TRIBUTION	System		
DISINFECTANT RESIDUAL	S AND DIS	INFECTION B	Y-PRODUC	<u>_</u>	•	
Chlorine (ppm)	Ν	0.70	0.57-0.83	MRDLG = 4	MRDL = 4	Water additives used to control microbes
Haloacetic Acids (ppb)	Ν	7.66	1.06-17.0	N/A	60	By-product of drinking water disinfection
Total Trihalomethanes (ppb)	Ν	22.8	5.36-57.3	N/A	80	By-product of drinking water disinfection

<u>Regulated Contaminants which were tested for, but not detected include:</u> Microbial Contaminants (E. *Coli***, Total Coliform Bacteria, Cryptosporidium); Inorganic Contaminants (Antimony, Beryllium, Cadmium, Cyanide, Mercury, Nickel, Nitrite, Selenium, Thallium); various Volatile Organic Chemicals (VOCs) and Synthetic Organic Chemicals (SOCs).**

2014 WATER QUALITY REPORT

Page 7

SUMMARY OF NPWA WATER QUALITY DATA									
REGULATED AT THE CUSTOMER'S TAP (2013)									
Contaminant (Unit of measurement)	Violation Y/N	90thPer- centile Result	Action Level (AL)	MCLG	# Sites above AL of total	Sources of Contamination			
Copper (ppm)	Ν	0.59	1.3	1.3	0 out of 33	Corrosion of household plumbing sys- tems; erosion of natural deposits; leaching from wood preservatives			
Lead (ppb)	Ν	3.9	15	0	0 out of 33	Corrosion of household plumbing sys- tems; erosion of natural deposits			

¹ Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than 6 months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask advice from your health care provider.

² The results for Alpha Emitters in this table represents data from wells that were in service in 2014. The one well that had higher results reported in 2011 was shut down permanently and has not been used since.

³ Turbidity is a measure of the cloudiness of the water and is a good indicator of the effectiveness of the NPWA filtration system. As a member of the partnership for Safe Drinking Water, NPWA's goal is to achieve <0.1 NTU. In 2014, NPWA achieved this goal for 100% of all samples.

NI	PWA UN	REGULATED	Contaminan	NTS (FEB. 2014	- MAR. 2015 TEST RESULTS)
Contaminant	Unit	Avg. Level Detected	Range of Results	Sample Locations	Use or Environmental Source
Chlorate	ppb	103	21 - 175	FPW & Wells	Agricultural defoliant or desiccant; disinfection byproduct; and used in production of chlorine
Officiale	ppb	120	74 - 180	Dist. System	dioxide
Chlorodiflruoro- methane (HCFC-22)	ppb	0	0 - 0.1	FPW & Wells	Occurs as a gas, and used as a refrigerant, as a low-temperature solvent, and in fluorocarbon resins, especially tetrafluoroethylene polymers
Ohmensium		0	0 - 0.3	FPW & Wells	Discharge from steel and pulp mills; erosion from
Chromium	ppb	0	0 - 0.6	Dist. System	natural deposits
Chromium-6	ppb	0.05	0 - 0.16	FPW & Wells	Naturally occurring element; used in making steel and other alloys; chromium -3 or -6 forms are used for chrome plating, dyes and pigments,
		0.15	0 - 0.66	Dist. System	leather tanning and wood preservation
1,4-Dioxane	ppb	0	0 - 0.8	FPW & Wells	Used as a solvent or solvent stabilizer in manu- facture and processing of paper, cotton, textile products, automotive coolant, cosmetics and shampoo
Molybdenum	ppb	2.4	0 - 12.0	FPW & Wells	Naturally occurring element found in ores and presnt in plants, animals and bacteria; commonly used form molybdenum trioxide used as a chemi-
		3.0	0 - 12.0	Dist. System	
Strontium	ppb	512	85 - 1400	FPW & Wells	Naturally occurring element; historically, commer- cial use of strontium has been in the faceplate glass of cathode-ray tube televisions to block x-
		264	110 - 720	Dist. System	ray emissions
Vanadium	ppb	0.9	0 - 2.8	FPW & Wells	Naturally occurring elemental metal; used as vanadium pentoxide which is a chemical interme-
		0.4	0 - 1.7	Dist. System	diate and a catalyst

Hilltown Township Water and Sewer Authority P.O. Box 365 Sellersville, PA 18960

Regular Hilltown Water and Sewer Authority Meetings are held on the second Wednesday of every month at 7:30 p.m. at the Authority Office.

316 Highland Park Road Hilltown Township

Customer Service:	(215) 453-6065
Emergency After-Hours	(215) 453-6065
EPA Safe Drinking Water Ho	tline (800) 426-4791

Contact Authority Manager James C. Groff if you have any questions concerning this report. Hilltown Water and Sewer Authority is a member of the Pennsylvania Rural Water Association and the American Water Works Association.

HTWSA

WE'RE ON THE WEB!! WWW.HTWSA.ORG